Assessing non-additive effects in GBLUP model.
نویسندگان
چکیده
Understanding non-additive effects in the expression of quantitative traits is very important in genotype selection, especially in species where the commercial products are clones or hybrids. The use of molecular markers has allowed the study of non-additive genetic effects on a genomic level, in addition to a better understanding of its importance in quantitative traits. Thus, the purpose of this study was to evaluate the behavior of the GBLUP model in different genetic models and relationship matrices and their influence on the estimates of genetic parameters. We used real data of the circumference at breast height in Eucalyptus spp and simulated data from a population of F2. Three commonly reported kinship structures in the literature were adopted. The simulation results showed that the inclusion of epistatic kinship improved prediction estimates of genomic breeding values. However, the non-additive effects were not accurately recovered. The Fisher information matrix for real dataset showed high collinearity in estimates of additive, dominant, and epistatic variance, causing no gain in the prediction of the unobserved data and convergence problems. Estimates presented differences of genetic parameters and correlations considering the different kinship structures. Our results show that the inclusion of non-additive effects can improve the predictive ability or even the prediction of additive effects. However, the high distortions observed in the variance estimates when the Hardy-Weinberg equilibrium assumption is violated due to the presence of selection or inbreeding can converge at zero gains in models that consider epistasis in genomic kinship.
منابع مشابه
Mixed Model Methods for Genomic Prediction and Variance Component Estimation of Additive and Dominance Effects Using SNP Markers
We established a genomic model of quantitative trait with genomic additive and dominance relationships that parallels the traditional quantitative genetics model, which partitions a genotypic value as breeding value plus dominance deviation and calculates additive and dominance relationships using pedigree information. Based on this genomic model, two sets of computationally complementary but m...
متن کاملInclusion of Dominance Effects in the Multivariate GBLUP Model
New proposals for models and applications of prediction processes with data on molecular markers may help reduce the financial costs of and identify superior genotypes in maize breeding programs. Studies evaluating Genomic Best Linear Unbiased Prediction (GBLUP) models including dominance effects have not been performed in the univariate and multivariate context in the data analysis of this cro...
متن کاملGenomic breeding value prediction and QTL mapping of QTLMAS2011 data using Bayesian and GBLUP methods
BACKGROUND The goal of this study was to apply Bayesian and GBLUP methods to predict genomic breeding values (GEBV), map QTL positions and explore the genetic architecture of the trait simulated for the 15th QTL-MAS workshop. METHODS Three methods with models considering dominance and epistasis inheritances were used to fit the data: (i) BayesB with a proportion π = 0.995 of SNPs assumed to h...
متن کاملIncluding Dominance Effects in the Genomic BLUP Method for Genomic Evaluation
We evaluated the performance of GBLUP including dominance genetic effect (GBLUP-D) by estimating variances and predicting genetic merits in a computer simulation and 2 actual traits (T4 and T5) in pigs. In simulation data, GBLUP-D explained more than 50% of dominance genetic variance. Moreover, GBLUP-D yielded estimated total genetic effects over 1.2% more accurate than those yielded by GBLUP. ...
متن کاملA Comparison of the Sensitivity of the BayesC and Genomic Best Linear Unbiased Prediction(GBLUP) Methods of Estimating Genomic Breeding Values under Different Quantitative Trait Locus(QTL) Model Assumptions
The objective of this study was to compare the accuracy of estimating and predicting breeding values using two diverse approaches, GBLUP and BayesC, using simulated data under different quantitative trait locus(QTL) effect distributions. Data were simulated with three different distributions for the QTL effect which were uniform, normal and gamma (1.66, 0.4). The number of QTL was assumed to be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics and molecular research : GMR
دوره 16 2 شماره
صفحات -
تاریخ انتشار 2017